到目前為止,我們處理的流動問題都是假設溫度是不變的 (恆溫),但是在很多高分子加工應用 (polymer processing applications) 和潤滑系統 (lubrication systems),溫度隨位置和時間的變化很顯著,因此溫度變化不能被忽略。在製造塑膠物件時,我們通常先熔化塑膠顆粒 (plastic pellets),然後對熔融材料進行一序列加工操作,最後材料被冷卻以得到成品。很明顯地,熱傳和相改變扮演很重要的角色。在高速加工操作,例如,擠出 (extrusion) 和潤滑問題,黏滯加熱 (viscous heating) 造成的溫度上升很顯著 (因為高分子液體的高黏度和很大的速度梯度),因此,黏滯加熱項必需被包括在溫度的變化方程式 (the equation of change for temperature)。再者,因為高分子的低熱傳導率 (low thermal conductivity),黏滯加熱造成的溫度增加可以很可觀且不均勻。因為高分子液體的熱不穩定性 (thermal instability),在高分子流動問題中,黏滯加熱效應和局部溫度的可靠估算就顯得特別重要。如果熱點 (hot spots) 於加工管線發生,將造成化學裂解 (chemical degradation)。欲描述非恆溫流動,不僅需要聯立解出三個變化方程式 (連續、運動和能量方程式),一般也需要考慮所有物理性質的溫度相依性 (黏度、熱傳導率、密度、熱容量);對於高分子液體,黏度的剪切速率相依性不可以被忽略。
在這裡,Equations 4.4-1 至 3 是一開始要討論的熱傳和流體流動方程式,它們和 Table 1.2-1 很相似:
(1.1-13)
從 Eq. 1.1-13 得到 Eq. 4.4-3 時,已經假設
U^ =
U^(
p,
T),即假設單位質量內能
U^ 與任何動力學的量 (kinematic quantities) 沒有相依性,例如,應變和應變率。這是一個在所有熱傳計算的標準假設,雖然此假設被視為非常合理,但目前並沒有關於它的完整實驗研究。
Table 4.4-1 列出 Eqs. 4.4-1 至 3 經過比例化、無因次化後的型式 (scaled, dimensionless forms),在表中,能量方程式中的對流項被 Péclet number (Pé = ρCp^HV/k) 比例化。因為高分子熔體和高濃度溶液的熱傳導率很低,因此,在典型的非衡溫流動問題中 Pé >> 1,表示熱被對流的速度比被傳導來的快。黏滯加熱的項被熱生成數 Gn 所比例化,Gn 的型式取決於問題的特徵溫度差 △T0 之選擇 (characteristic temperature difference)。如果 △Tprocess << △Trheol,則可合理選擇特徵的 △T0 做為 △Tprocess,在此情況下,Gn number 是第一章介紹的 Brinkman number (在這裡 μ 被 η0 所取代,η0 是參考溫度和剪切速率的黏度)。如果 △Tprocess 相較於 △Trheol 並不是很小,最好使用後者當作 △T0,然後 Gn 變成 Nahme-Griffith number (Na)。
接著我們檢視出現在變化方程式的流體性質及其溫度相依性。Table 4.4-2 提供數個商業化熔融高分子的數值,包括熱傳導率 k、單位質量熱容量 Cp^、密度 ρ。可以發現 k 值都落在一個非常窄的範圍 (0.1-0.3 W/m∙K)。然後 Table 4.4-3 提供 k、Cp^、ρ 的溫度相依性資訊。在大部分的流動和熱傳計算,我們假設流體的熱傳導率、熱容量、密度並不隨溫度或壓力顯著變化。熱傳導率為定值的假設不會是太大的問題,因為 k 並不隨溫度改變太明顯,也不隨速度梯度改變太大。此外,似乎毋需使用二階張量取代純量的熱傳導率,去解釋非均向熱傳導 (nonisotropic heat conduction)。固定密度的這個假設,表示我們的討論將侷限在強制對流 (forced convection) 且自由對流 (free convection) 被忽略。
雖然在很多的計算中, 假設 k、Cp^、ρ 不隨溫度改變是很合理的,但對於在廣義化牛頓流體模型的參數卻不然,例如,冪次律參數 m 和 n 的溫度相依性之經驗式為
(4.4-4)
(4.4-5)
其中,
T0 是參考溫度,
m0 和
n0 是在該溫度的參數值。常數
A 和
B 是特徵溫差的倒數,可由流體的實驗數據決定。由 Table 4.1-2 可知,參數
m 是溫度的強函數。
B 通常很小,因此假設
n 是常數很合適。
另一方面,在工程的文獻中,有不少非恆溫流動系統的解析解 (假設物理性質為常數),這些結果在數量級的估算 (order-of-magnitude estimates) 非常有用,以及在物理性質不具溫度相依性的極限下可用來確認電腦程式。我們本節的後面將提供幾個解析解,此外,也提供兩個 Nusselt numbers 計算值的表格,一個是管子 (tubes; Table 4.4-4),一個是薄槽縫 (thin slits; Table 4.4-5)。在 Examples 4.4-1 和 2,我們推導圓管的固定壁溫流入問題 (constant-wall-temperature entries for circular tubes)。
Reference: Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, 2nd ed (Wiley-Interscience 1987).
沒有留言:
張貼留言