Welcome Message

「流行起於高分子,變化盡藏微宇宙」! 歡迎光臨「流變學好簡單 | The RheoMaster」部落格,成立於 2019/2/22,已於 2024 年初屆滿 5 年!旨在提供簡單的中文流變學知識,包括高分子流變學、輸送現象、高分子加工、流變量測等。您可至右方進行關鍵字搜尋,若有任何建議,請至文章留言或來信 yuhowen@gmail.com。 Welcome to "The RheoMaster" Blog. This website was established in Feb 2019, and has celebrated its 5th anniversary in eary 2024. In view of the lack of Chinese literature on rheology, here we offer basic knowledge relevant to polymer rheology, transport phenomena, polymer processing, rheometry, etc. If you have any suggestion, please leave a message on the post you are reading or email us at yuhowen@gmail.com.

精選文章

網誌作者近期國際期刊論文發表 (Recent SCI Journal Articles Authored by the Admin)

  Extensional Rheology of Linear and Branched Polymer Melts in Fast Converging Flows 線型、分支型高分子融體於高速收縮流之拉伸流變 Rheol. Acta 62 , 183–204 (2023)...

2021年5月7日

線性黏彈性質與測黏函數的關係: Cox-Merz 法則 (Relation between Linear Viscoelastic Property and Viscometric Function)

對於纏結性高分子溶液或熔體,剪切黏度曲線亦可透過 Cox-Merz 法則取得。根據此經驗法則,剪切黏度 η (shear viscosity) 應等於複數黏度 |η*| (complex viscosity)

(1)
其中,ω 的單位使用 rad/s,而不是 1/s (Hz)。即,在 ω = 10 rad/s 測得的複數黏度,等於 γ̇  = 10 1/s 測得的剪切黏度,即
|η*(ω=10 rad/s)| = η(γ̇ =10 1/s)     (2)
[註:ω = 2πf。當 ω = 10 rad/s,則 f = 1.59 Hz]
因此,Cox-Merz 法則常被用來檢驗旋轉模式下測得的穩態剪切黏度,也是一種快速取得黏度曲線的方法。






Reference: RB Bird, RC Armstrong, O Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, 2nd ed (Wiley-Interscience 1987).

沒有留言:

張貼留言