1. 塑化和注射裝置
(The Plasticating and Injection Unit)
塑化和注射單元如 Fig. 6.8 所示。塑化單元的主要任務是將高分子熔化、將熔體累積在螺桿腔中 (screw chamber)、將熔體注入模穴 (cavity)、並在冷卻過程中維持在保壓壓力。塑化單元在射出成型機中是一個具有往復螺桿的擠出機 (an extruder with a reciprocating screw) |
塑化單元的主要元素是:
∎ 料斗 (hopper)
∎ 螺桿 (screw)
∎ 加熱帶 (heater bands)
∎ 止回閥 (check valve)
∎ 噴嘴 (nozzle)
料斗、螺桿和加熱帶類似於塑化螺桿擠出機 (plasticating single screw extruder);然而,不同於擠出機,射出成型機的螺桿可以向後、向前滑動,因此可允許熔體的累積和射出。這個特性賦予它一個名稱,即往復螺桿 (reciprocating screw)。儘管射出成型機最常見的螺桿是三區塑化螺桿 (three-zone plasticating screw),兩階段通風螺桿 (two-stage vented screws) 也常被用於熔化階段之後的水汽及單體氣體萃取 (extract moisture and monomer gases)。
∎ 螺桿 (screw)
∎ 加熱帶 (heater bands)
∎ 止回閥 (check valve)
∎ 噴嘴 (nozzle)
料斗、螺桿和加熱帶類似於塑化螺桿擠出機 (plasticating single screw extruder);然而,不同於擠出機,射出成型機的螺桿可以向後、向前滑動,因此可允許熔體的累積和射出。這個特性賦予它一個名稱,即往復螺桿 (reciprocating screw)。儘管射出成型機最常見的螺桿是三區塑化螺桿 (three-zone plasticating screw),兩階段通風螺桿 (two-stage vented screws) 也常被用於熔化階段之後的水汽及單體氣體萃取 (extract moisture and monomer gases)。
止回閥或單向閥 (check valve or non-return valve) 位於螺桿的末端,它使得螺桿能在注射和保壓過程中具有柱塞作用 (plunger),可以不讓高分子熔體回流至螺桿通道。止回閥及其在運行期間的功能分別如 Figs. 6.2 和 6.8 所示,高品質的止回閥在注入和保壓過程,僅允許少於 5% 的熔體回到螺桿通道中。
噴嘴位於塑化單元的末端,於注入時緊貼著澆口套 (sprue bushing)。噴嘴類型為開放或關閉,開放式噴嘴最為簡單,且能使壓力消耗降至最低。
2. 夾緊單元
(The Clamping Unit)
射出成型機的夾緊裝置的工作是打開和關閉模具,並緊密合上模具,以避免在充填和保壓過程中產生毛邊 (flash)。現代射出成型機主要有兩種夾緊方式: 機械式 (mechanical) 和液壓式 (hydraulic)。
Figure 6.9 顯示了處於打開和關閉模具位置的肘節機構 (toggle mechanism)。雖然肘節本質上是一個機械裝置,它是透過液壓圓柱驅動 (hydraulic cylinder)。使用肘節機構的優勢在於,隨著模具接近閉合時,可用的閉合力會增加,且閉合會明顯減速。但是,當系統完全擴展時,肘節機構僅傳遞其最大閉合力。
Figure 6.10 顯示了處於打開和關閉模具位置的液壓夾緊裝置。液壓系統的優點是最大的夾緊力在任何合模位置 (any mold closing position) 都能獲得最大的力,並且系統可以採用不同的模具尺寸,而無需重大的系統調整。
3. 模穴
(Mold Cavity)
射出成型機的中心點是模具。模具使高分子熔體進入整個模穴、使零件成形、冷卻熔體、然後頂出成品。如 Fig. 6.11 所示,模具是訂製的 (custom-made),並且由以下元素組成:
∎ 澆道和流道系統 (sprue and runner system)
∎ 澆口 (gate)
∎ 模穴 (mold cavity)
∎ 冷卻系統 (熱塑性塑料)
∎ 頂出系統 (ejector system)
流動路徑: 螺桿腔體 (screw chamber)、噴嘴 (nozzle)、澆道 (sprue)、流道 (runner)、澆口 (gate)、模穴 (cavity) |
如 Fig. 6.12 所示,在模具充填過程中,熔體流經澆道,並經由流道分配到模穴中。Figure 6.12 (a) 中的流道系統是對稱的 (symmetric),所有模穴同時被填充,導致高分子以相同的方式被填充至所有腔體。這種分支的流道系統的缺點是流路較長,導致較多材料和較高壓力的消耗。另一方面,如 Fig. 6.12 (b) 所示的非對稱流道系統 (asymmetric runner system),導致零件品質不同,均等充填模穴也可以透過改變流道直徑來實現。
冷流道降低模具成本 |
流道系統的類型有兩種: 冷的和熱的。冷流道 (cold runners) 與零件一起被頂出,並且在離模後需修剪 (trimmed),冷流道的優點是低模具成本 (lower mold cost)。熱流道將高分子保持在其熔融溫度,材料在零件頂出後停留在流道系統中,並在下一個週期被注入腔體。熱流道系統有兩種類型: 外部和內部加熱。外部加熱的流道具有圍繞流道的加熱元件,保持高分子恆溫。內部加熱的流道具有加熱元件沿著流道中心,保持高分子熔體中心溫度較高,並可能沿著流道外表面固化。雖然熱流道系統大大增加了模具成本,其優點包括消除了修整和較低的射出壓力。各種不同配置的熱流道如 Fig. 6.13 所示,值得注意的是在熱流道腔系統中有兩條分模線 (parting lines),其中第二條分模線僅在模具維護期間打開。
熱流道用於減少廢料量 |
如 Fig. 6.14 所示,當射出大型零件時,澆道 (sprue) 有時會用作澆口 (gate),澆口隨後必須被修整 (通常需要進一步的表面處理)。另一方面,針型澆口 (pin-type gate; Fig. 6.14) 是很小的孔口 (orifice),故零件很容易自這種澆口折斷,只留下通常不需要加以處理的小痕跡。Figure 6.14 顯示其他類型的澆口,例如,薄膜澆口 (film gates) 用於消除方向性 (orientation);圓盤或隔板澆口 (disk or diaphragm gates) 用於對稱零件 (例如,光碟)。
Reference: T Osswald, Understanding Polymer Processing: Processes and Governing Equations, 2nd ed (Hanser 2017).
沒有留言:
張貼留言