多模態 (multi-mode) Phan-Thien-Tanner (PTT) 模型之本質方程式為
(1, 2, 3)
本文將介紹單一模態 (single-mode, i = 1) PTT 模型預測之穩態剪切流物質函數 (material functions for steady shear flow),因為 i = 1,所以 Eq. 2 的本質方程式簡化成為
Z(tr τ) τ + λτ(1) + (λξ/2){γ_dot ∙ τ + τ ∙ γ_dot} = ηγ_dot (4)
首先,對於穩態剪切流 (steady shear flow),速度分佈為 vx(y) = γ_dot y。Equation 4 經展開後,可得知應力張量 τ 的九個分量中,有四個分量為零 (即 τxz = τzx = 0、τyz = τzy = 0),其它不為零的分量則以下方式子表之 (Eqs. 5-8),依序為 τxx、τyy、τzz、τyx (其中,τyx = τxy)
Z(trτ) τxx - 2λγ_dot τyx + λξγ_dot τyx = 0 (5)
Z(trτ) τyy + λξγ_dot τyx = 0 (6)
Z(trτ) τzz = 0 (7)
Z(trτ) τyx - λγ_dot τyy + (λξγ_dot/2)(τxx + τyy) = ηγ_dot (8)
由 Eq. 7 得知 τzz = 0。將 Eqs. 5-8 再一次整理後可得 Eqs. 9-11
Z(trτ) τxx = (2 - ξ) λγ_dot τyx (9)
Z(trτ) τyy = - λξγ_dot τyx (10)
Z(trτ) τyx + (ξ/2 - 1) λγ_dot τyy + (λξγ_dot/2) τxx = ηγ_dot (11)
將 Eq. 10 除以 Eq. 9 可得 τyy (註: 如果 ξ = 0,稱為 affine PTT model,則 τyy = 0)
τyy = [- ξ/(2 - ξ)] τxx (12)
由 Eq. 9 可得 τyx
τyx = Z(trτ) τxx/[(2 - ξ) λγ_dot] (13)
將 Eqs. 12 和 13 代入 Eq. 11 可得 τxx
(Z(trτ))2 τxx + (2 - ξ)λ2ξ(γ_dot)2 τxx = ηλ(2 - ξ)(γ_dot)2 (14)
Equation 3 的 Z 有兩種型式,當指數值 (ελ/η) trτ 很小時,Z = exp[(ελ/η) trτ] ≈ 1 + (ελ/η) trτ。在穩態剪切流下 (τzz = 0),Z 為
Z = exp[(ελ/η)(τxx + τyy)] (15)
或
Z = 1 + (ελ/η)(τxx + τyy) (16)
將 Eq. 15 (exponential-PTT)、Eq. 16 (linear-PTT) 結合 Eq. 12,然後分別代入 Eq. 14,以數值方法求 τxx (e-PTT),或以公式求 τxx (l-PTT;一元三次方程式),可得到 τxx、τyy、τyx。接著將這些應力分量代入下方物質函數 (Eqs. 17-19),可分別得到 PTT 模型對穩態剪切流之黏度、第一和第二正向力係數預測。
η = τyx/γ_dot (17)
Ψ1 = (τxx - τyy)/(γ_dot)2 (18)
Ψ2 = (τyy - τzz)/(γ_dot)2 (19)
Figures 1、2 分別為 l-PTT 模型對無次次的 τyx、τxx 之預測。
|
Figure 1 (reproduced) |
|
Figure 2 (reproduced) |
Figures 3、4 分別為 l-PTT 模型對暫態剪切流場、穩態剪切及穩態拉伸流場的黏度預測。
|
Figure 3 ξ = 0.001, ε = 0.01 (l-PTT model) |
|
Figure 4 ξ = 0 (affine l-PTT model) |
Reference:
1. RB Bird, RC Armstrong, O Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, 2nd ed (Wiley-Interscience 1987).
2. MA Alves, FT Pinho, PJ Oliveira, "Study of steady pipe and channel flows of a single-mode Phan-Thien-Tanner fluid," J. Non-Newtonian Fluid Mech. 101, 55 (2001).
3. RI Tanner, Engineering Rheology, 2nd ed (Oxford 2002).