本文介紹 Pearson 等人 [Pearson et al. (1989)] 提出的鏈拉伸模型 (chain-stretching model of Pearson et al.),此模型是完整 Doi-Edwards-Marrucci-Grizzute (DEMG) 模型之簡化版本 (toy version)。Pearson 等人的模型包含了三個成份: 方向性張量 S、描述鏈拉伸的純量 λ、應力張量 σ (由 S 和 λ 表之),這些方程式為
於 Eq. 1,m(t, t') = (1/τd)exp(-(t-t')/τd) 是記憶函數 (memory function),能補捉黏彈流體受應變後的應力鬆弛。Equation 1 的 Q(E(t, t')) 是形變相依的通用 Doi-Edwards 張量 (deformation-dependent "universal" tensor of Doi and Edwards),其被形變梯度歷史 E(t, t') 定義成
此模型對起動剪切流場 (start of shear flow)、穩態剪切流場 (steady shear flow) 之基本預測分別呈現於 Fig. 1 和 Fig. 2。
(a) 無因次暫態黏度 |
(b) 鏈拉伸比值 λ Figure 1 起動剪切流場之流變性質 (τd / τs = 50) |
(a) 無因次剪切應力、黏度 |
(b) 方向性張量 S 的 xy 分量 |
(c) 鏈拉伸比值 λ Figure 2 穩態剪切流場之流變性質 (τd / τs = 50) |
Reference:
1. DS Pearson, AD Kiss, LJ Fetters, M Doi, "Flow-induced birefringence of concentrated polyisoprene solutions," J Rheol 33, 517 (1989).
2. DW Mead, RG Larson, M Doi, "A molecular theory for fast flows of entangled polymers," Macromolecules 31, 7895 (1998).
3. TCB McLeish, "Tube theory of entangled polymer dynamics," Adv. Phys. 51, 1379 (2002).
1. DS Pearson, AD Kiss, LJ Fetters, M Doi, "Flow-induced birefringence of concentrated polyisoprene solutions," J Rheol 33, 517 (1989).
2. DW Mead, RG Larson, M Doi, "A molecular theory for fast flows of entangled polymers," Macromolecules 31, 7895 (1998).
3. TCB McLeish, "Tube theory of entangled polymer dynamics," Adv. Phys. 51, 1379 (2002).
沒有留言:
張貼留言