Welcome Message

「流行起於高分子,變化盡藏微宇宙」! 歡迎光臨「流變學好簡單 | The RheoMaster」部落格,成立於 2019/2/22,已於 2024 年初屆滿 5 年!旨在提供簡單的中文流變學知識,包括高分子流變學、輸送現象、高分子加工、流變量測等。您可至右方進行關鍵字搜尋,若有任何建議,請至文章留言或來信 yuhowen@gmail.com。 Welcome to "The RheoMaster" Blog. This website was established in Feb 2019, and has celebrated its 5th anniversary in eary 2024. In view of the lack of Chinese literature on rheology, here we offer basic knowledge relevant to polymer rheology, transport phenomena, polymer processing, rheometry, etc. If you have any suggestion, please leave a message on the post you are reading or email us at yuhowen@gmail.com.

精選文章

網誌作者近期國際期刊論文發表 (Recent SCI Journal Articles Authored by the Admin)

  Extensional Rheology of Linear and Branched Polymer Melts in Fast Converging Flows 線型、分支型高分子融體於高速收縮流之拉伸流變 Rheol. Acta 62 , 183–204 (2023)...

2019年9月14日

壁滑動速度 (Wall Slip Velocity) 的估算

對於牛頓 (Newtonian) 或冪次律 (power-law) 流體,其毛細管內的速度分佈已知,為了取得管壁處 (r = R) 的真實剪切率 γ ̇R (true wall shear rate),我們將流速對徑向位置進行微分 (即 γ ̇R = -dvz/dr|r=R),最後據此值估算牛頓流體或冪次律流體之黏度。即
ητrz|r=R / (- dvz/dr|r=R) τR/γ ̇R   (1)
然而,對於流速分佈未知的通用流體 (general fluid),我們需透過 Weissenberg-Rabinowitsch 修正法 (Eq. 2),將表觀的壁剪切率 (γ ̇a) 修正成真實的壁剪切率 (γ ̇R) 後,才能將真實的壁剪切率代入 Eq. 1 估算黏度。
(2)
然而,於推導 Eq. 2 時,其背後的假設是沒有壁滑動 (no slip)。但是,這假設在高剪切應力 (或剪切率) 時可能已被違反。

如 Fig. 10.9b 所示,壁滑的效應將減少流體所受形變程度,換句話說,壁滑效應將使流體經歷的整體剪切率變小。由於壁滑發生在流體與毛細管的界面,因此這個效應在管壁處特別明顯。不過,管壁的剪切應力 τR = ΔPR/2卻不受此邊界條件改變而受影響

Figure 10.9 (a) 無壁滑、(b) 壁滑現象 (管壁剪切率較小)

為了計算壁滑發生之流體黏度,我們必需知道管壁處的真實剪切率Mooney 修正方法可以協助我們估算壁滑現象發生之真實壁剪切率。簡單來說,此分析方法的第一步是將表觀的剪切率針對壁滑予以修正。第二步是將此修正的剪切率透過常用的 Weissenberg-Rabinowitsch 方程式予以再次修正。透過上述兩步的修正後,便可取得真實的壁剪切率。


更詳細地說,表觀的壁剪切率 (γ ̇a) 一般表示成

(3)
其中,vz,av = Q/πR2 是毛細管內平均的流體速度。當壁滑發生時,流量 Q 將增大,所以 Eq. 3 將高估表觀的壁剪切率;事實上,管壁附近的剪切率反而因壁滑現象而變小 (Fig. 10.9b)。如果我們以 vz,av - vz,slip 取代 Eq. 3 的 vz,av (vz,slip 壁滑動速度 (wall slip velocity)),我們可以得到一個經修正的壁剪切率 (corrected wall shear rate)
(4)
經移項可得
4vz,av/Rγ ̇a,slip-corrected + 4vz,slip/R     (5)
根據 Eq. 5,我們假設 vz,slip 僅為壁剪切應力 (τR) 的函數。所以,在固定壁剪切應力 τR 下 (= pR/2L),將表觀的壁剪切率 4vz,av/R (γ ̇a = 4Qmeasured/πR3) 對半徑倒數 1/R 作圖,可以得到斜率 4vz,slip、截距 γ ̇a,slip-corrected 的數條直線[註: 使用的毛細管均需具相同的 L/R 值,這樣可以確保在相同的 τ下,p 相同]

Figure 10.10 是符合此趨勢的 LLDPE 熔體之數據 (linear low-density polyethylene melt)。當壁剪切力大於等於臨界值 0.2 MPa (即 pR/2L  0.2 MPa),vz,slip 將不為零且其值隨壁剪切力增加而變大。反之,當壁剪切力小於臨界值 0.2 MPa,斜率為零,表示無壁滑現象,也就是說,表觀的壁剪切率不隨管徑改變而不同,例如,Figure 10.10 圖中壁剪切力較低的情況 (pR/2L = 0.01 和 0.05 MPa)。

Figure 10.10 是採用毛細管黏度計的等壓模式 (constant pressure mode) 取得,然而,實驗的經驗告訴我們,相較於等速模式 (constant speed mode),等壓模式的數據擷取較耗時 (PID 控制較不易),所耗費的樣品體積過多,故在料筒體積有限的限制下,需進行較多次的實驗才能收集完整的壁剪應力範圍。

為了克服 (1) 有限的毛細管幾何選擇 (一般實驗室不會專門訂製三個 L/值相同但 R 值不同的毛細管),以及 (2) 等壓模式的實驗耗時問題,我們必需採取非典型的做法如下。第一步,使用等速模式,收集相同長度但不同半徑毛細管 (至少三個半徑) 之穩態壁剪切應力對表觀壁剪切率數據;第二步,使用 Cross model 擬合實驗數據,再將擬合結果轉繪成表觀壁剪切率對半徑倒數之圖 (即 Fig. 10.10)

Figure 10.10 LLDPE 熔體的表面剪切率對毛細管半徑倒數之作圖。每條直線代表不同的壁剪切應力 (△pR/2L),越是水平的線代表越少壁滑動 (例如應力為 0.01 和 0.05 MPa),壁滑速度可由斜率除以 4 近似之

取得修正的剪切率後 (γ ̇a,slip-corrected),下一步便是將這些修正值用在 Weissenberg-Rabinowitsch 方程式 (Eq. 2) 取得最終的真實壁剪切率。

外插長度 b (extrapolation length) 是另一種呈現壁滑程度的方法,如 Fig. 10.11 所示,是速度外插至零對應的長度。透過下式 (Eq. 5) 定義可得 之值,於 Eq. 5 中,v1,slip 是透過 Mooney 分析方法估算的壁滑動速度,而 γ ̇R,slip-corrected 是經過兩次修正的剪切率 (doubly corrected shear rates)。

(6)
外插長度 常見於壁滑分子成因之理論探討,因為分子模型可以預測 b 如何隨分子結構改變,例如,分子量和單體性質。

Figure 10.10 外插長度 b


Reference: FA Morrison, Understanding Rheology (Oxford University Press 2001).

沒有留言:

張貼留言