流變量測主要有兩種標準流場,分別為剪切 (shear) 和拉伸 (elongation) 流場,如圖一所示。前者的型式雖然較為簡單,但卻能提供定義清楚的材料性質;後者雖然較複雜,但是卻接近真實的複雜流場。
Figure 1 同時提供各種量測系統所對應的剪切速率範圍。以剪切流場為例,單一的量測系統僅能涵蓋有限的剪切速率範圍,例如,對於高黏度的流體,常見的錐板黏度計 (cone-and-plate viscometer) 約能提供 10-3 至 102 1/s 的範圍,大於或小於上下界,會分別因慣性力 (inertial force) 過大導致樣品被甩出或因力矩 (torque) 過小導致訊雜比偏低,兩者均造成數據的不可信。
針對極稀薄的高分子溶液,受限於流變儀機械式量測的解析極限,一般改採重力驅動的毛細管黏度計 (gravity-driven capillary),取得精準的高分子黏度。另一方面,壓力驅動的毛細管 (pressure-driven capillary) 則用於中、低黏度流體的量測。
Figure 1 所示各種量測系統背後的假設、工作方程式 (working equations) 將於之後的文章分別介紹。
附帶一提,流變儀 (rheometer) 與黏度計 (viscometer) 的名稱差異,前者可提供精準且複雜的旋轉、振盪、時間、溫度控制模式,但後者僅能提供簡單的旋轉模式。因此,前者適用於取得材料的物質函數 (material function),後者僅可取得某個轉速下的黏度。故在價格方面,流變儀的費用往往是黏度計的五倍以上。
Figure 1 |
沒有留言:
張貼留言